September 28, 2023


Technology Room

Why xHE-AAC is being embraced at Meta

4 min read
  • We’re sharing how Meta delivers high-quality audio at scale with the xHE-AAC audio codec.
  • xHE-AAC has already been deployed on Fb and Instagram to supply enhanced audio for options like Reels and Tales. 

At Meta, we serve each media use case conceivable for billions of individuals internationally — from short-form, user-generated content material, reminiscent of Reels, to premium video on demand (VOD) and reside broadcasts. Given this, we’d like a next-generation audio codec that helps a spread of working factors with wonderful compression effectivity and fashionable, system-level audio options. 

To handle these wants now and into the longer term, Meta has embraced xHE-AAC because the car for delivering high-quality audio at scale.

The advantages of xHE-AAC

xHE-AAC is the newest member of the MPEG AAC audio codec household. The Fraunhofer Institute for Integrated Circuits IIS performed a considerable position within the improvement of xHE-AAC and the MPEG-D DRC commonplace.

Right now, xHE-AAC is already offering a superior audio expertise on Fb and Instagram — together with on Reels and Tales — and has plenty of useful options.

Loudness administration

With lots of of thousands and thousands of uploads per day throughout Fb and Instagram, we obtain audio tracks with loudness ranges starting from silence to full scale, and all the things in between. 

xHE-AAC codec at Meta

When individuals play these movies sequentially, they’ll understand some audio as being too loud or too quiet. This creates listener fatigue from having to always modify the quantity.

xHE-AAC codec at Meta

xHE-AAC’s built-in loudness administration system solves for loudness inconsistency whereas meticulously preserving creator intent by bringing the typical loudness of all periods to the identical goal stage and managing the dynamic vary of every session to suit the playback setting.

As an alternative of burning in a particular goal stage and dynamic vary compression (DRC) profile throughout encoding, xHE-AAC permits us to go away the unique audio traits untouched and delegate loudness administration processing to the shopper through loudness metadata, for the optimum audio expertise primarily based on context. 

xHE-AAC codec at Meta

Because of xHE-AAC’s loudness administration, individuals can spend extra time immersed of their favourite content material and fewer time twiddling with the quantity management.

Adaptive bit charge audio

Most individuals who use our apps devour media on cell units and anticipate the best audio high quality with out interruption. This presents a problem for streaming media as a result of connection high quality varies on cell and can lead to a really uneven person expertise. 

xHE-AAC codec at Meta

To optimize high quality beneath dynamic bandwidth constraints, we produce a number of video and audio qualities to match various community circumstances at playback time. Though we produce a number of audio lanes, we have now traditionally solely employed adaptive bit charge (ABR) algorithms to modify video qualities throughout playback as a result of it’s troublesome to allow adaptive bit charge audio with out compromising high quality throughout lane transitions.

With a view to allow seamless audio ABR, xHE-AAC introduces the idea of rapid playout frames (IPFs) that include all the information crucial to begin taking part in a brand new audio lane with out counting on information from different frames. By inserting an IPF at the start of every Dynamic Adaptive Streaming over HTTP (DASH) phase and aligning the phase durations of every lane, we will seamlessly swap between audio lanes throughout playback to supply the highest-quality audio at any obtainable bandwidth whereas avoiding playback stalls.

xHE-AAC codec at Meta

After launching audio ABR on Fb for Android, we had been capable of enhance person expertise by lowering the variety of periods the place playback stalls. 

How we deployed xHE-AAC

We generate xHE-AAC bitstreams utilizing an encoder SDK supplied by the Fraunhofer Institute for Built-in Circuits IIS, after which put together the ensuing audio recordsdata for DASH streaming with shaka-packager. The xHE-AAC encoder’s two-pass encoding mode is used to measure the enter loudness envelope and common program loudness on the primary go and carry out the precise audio information compression on the second go. As an additional benefit, two-pass encoding permits us to make use of loudness vary management (LRAC) DRC, which mitigates pumping artifacts in any other case launched by single-pass DRC algorithms. xHE-AAC codec at Meta

To organize an xHE-AAC audio adaptation set for ABR supply, IPFs are inserted at fixed time intervals, audio configuration parameters reminiscent of pattern charge and channel configuration are saved fixed, and distinctive stream identifiers are chosen for every lane within the audio adaptation set.

At playback time, we custom-fit the audio to the listening setting by configuring a goal loudness stage and DRC impact kind primarily based on context, and because of the embedded loudness metadata, we will adapt a single xHE-AAC bitstream to quite a lot of audio consumption use circumstances, from headphones to gadget audio system and varied ranges of background noise. Lastly, if the shopper is starved for information or bandwidth is plentiful, audio ABR will mechanically swap audio qualities to make sure that the best audio high quality is performed with out interrupting the playback session.

The place are you able to expertise xHE-AAC right this moment?

You may expertise xHE-AAC audio on Fb for iOS and Android, in addition to on focused surfaces on Instagram, reminiscent of Reels and Tales. We encourage you to put in the newest model of Fb and Instagram apps on iOS 13+ and Android 9+ to make sure you can expertise it.


This work is the collective results of your complete Video Infrastructure and Instagram Media Platform groups at Meta in collaboration with Fraunhofer Institute for Built-in Circuits IIS. The writer wish to lengthen particular due to Abhishek Gera, Tim Harris, Arun Kotiedath, Edward Li, Meng Li, Srinivas Lingutla, Denise Noyes, Mohanish Penta, David Ronca, Haixia Shi, Mike Starr, Cosmin Stejerean, Simha Venkataramaiah, Juehui Zhang, Runshen Zhu, and the engineering workforce at Fraunhofer Institute for Built-in Circuits IIS.

Copyright © All rights reserved. | Newsphere by AF themes.